Sheaf Cohomology, and the Heterotic Standard Model
نویسندگان
چکیده
Stable, holomorphic vector bundles are constructed on an torus fibered, non-simply connected Calabi-Yau threefold using the method of bundle extensions. Since the manifold is multiply connected, we work with equivariant bundles on the elliptically fibered covering space. The cohomology groups of the vector bundle, which yield the low energy spectrum, are computed using the Leray spectral sequence and fit the requirements of particle phenomenology. The physical properties of these vacua were discussed previously. In this paper, we systematically compute all relevant cohomology groups and explicitly prove the existence of the necessary vector bundle extensions. All mathematical details are explained in a pedagogical way, providing the technical framework for constructing heterotic standard model vacua. Email: vbraun, yanghe, [email protected]; [email protected]
منابع مشابه
Vector Bundle Extensions, Sheaf Cohomology, and the Heterotic Standard Model
Stable, holomorphic vector bundles are constructed on an torus fibered, non-simply connected Calabi-Yau threefold using the method of bundle extensions. Since the manifold is multiply connected, we work with equivariant bundles on the elliptically fibered covering space. The cohomology groups of the vector bundle, which yield the low energy spectrum, are computed using the Leray spectral sequen...
متن کاملNotes on Certain ( 0 , 2 ) Correlation Functions
In this paper we shall describe some correlation function computations in perturbative heterotic strings that, for example, in certain circumstances can lend themselves to a heterotic generalization of quantum cohomology calculations. Ordinary quantum chiral rings reflect worldsheet instanton corrections to correlation functions involving products of elements of Dolbeault cohomology groups on t...
متن کاملTopological Heterotic Rings
We prove the existence of topological rings in (0,2) theories containing non-anomalous left-moving U(1) currents by which they may be twisted. While the twisted models are not topological, their ground operators form a ring under non-singular OPE which reduces to the (a,c) or (c,c) ring at (2,2) points and to a classical sheaf cohomology ring at large radius, defining a quantum sheaf cohomology...
متن کاملApplications of Sheaf Cohomology and Exact Sequences on Network Codings
Sheaf cohomology is a mathematical tool for collating local algebraic data into global structures. The purpose of this paper is to apply sheaf theory into network coding problems. After the definition of sheaves, we define so called network coding sheaves for a general multi source network coding scenario, and consider various forms of sheaf cohomologies. The main theorem states that 0-th netwo...
متن کاملA Standard Model from the E8 × E8 Heterotic Superstring
In a previous paper, we introduced a heterotic standard model and discussed its basic properties. This vacuum has the spectrum of the MSSM with one additional pair of Higgs-Higgs conjugate fields and a small number of uncharged moduli. In this paper, the requisite vector bundles are formulated; specifically, stable, holomorphic bundles with structure group SU(N) on smooth Calabi-Yau threefolds ...
متن کامل